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ABSTRACT

Cyanines are emerging as useful agents for photoreleasing
biological compounds because of their capability of utilizing
near-infrared (NIR) light. Another benefit is their ability to
self-sensitize to produce singlet oxygen for the release of aryl
amines, a process that has not been as feasible in the past.
Here, we highlight the paper by Schnermann et al. (https://
doi.org/10.1111/php.13090), which reports on a cyanine con-
jugate for heterolytic photocleavage of aryl amines. This
paper is timely—delving into a photorelease mechanism
involving a domino rearrangement and b-elimination trig-
gered by NIR light.

COMMENTARY
A b-elimination strategy following cyanine photooxidation has
resulted in an amine photorelease reaction. A cyanine conjugate
designed for aryl amine photorelease conducted by Schnermann
et al. (1) provides insight into this very reaction.

Their study is reported in Photochemistry & Photobiology (1)
and describes the synthesis of cyanine conjugates that could be
photooxidized to trigger a b-elimination for subsequent amine
release. One such cyanine conjugate (CI-b-Cou) is shown in
Fig. 1. They have designed the photorelease to be able to utilize
NIR light for the amine to dissociate from the cyanine, where it
can react with biological receptors.

Schnermann’s incorporation of NIR activation into his system
provides benefits for photorelease compared to reactions that use,
for example, UV light. Such reliance on UV light has been
found to be problematic due to limited capabilities for deep tis-
sue penetration. It is worth noting that other researchers have
made inroads in photorelease mechanisms with visible light
(2–4), 2-photon activation (5,6) and photoinduced electron trans-
fer techniques (7,8). Another problem that arises is the limited
number of options for amine photorelease mechanisms. The com-
plication relates to heterolytic bond-cleaving reactions because
amines are strong bases and thus poor leaving groups (9–13).
Amine photorelease can be accomplished with 4-hydroxyphena-
cyl compounds (14). Additionally, direct carbon–nitrogen (C–N)

Figure 1. Cyanine designed and photochemically primed for amine photorelease. The first step is light and O2 dependent, wherein the cyanine conju-
gate produces singlet oxygen via self-sensitization, which attacks the C(21)=C(22) bond. The formed dioxetane is unstable and cleaves to a pair of car-
bonyls. The amine-bearing carbonyl product undergoes a domino intramolecular rearrangement and b-elimination to release the aryl amine.
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bond (15,16) and nitrogen–nitrogen (N–N) bond photocleaving
reactions can be used (17,18). In the latter case, photohomolysis
of the N–N bond in nitrosamines to release aminyl radical only
converts to the amine product after H-atom scavenging, and this
causes low product yields and complex reaction mixtures. Thus,
there is the potential to design the amine photorelease not only
for NIR activation (19–22), but with carbamates linkers so that a
b-elimination ensues (23–25).

Schnermann et al. (1) have incorporated both NIR and amine
photorelease in their study. They used a three-step sequence as
shown in Fig. 1. First, a self-sensitized formation of 1O2 led to
the regioselective [2 + 2] cycloaddition of 1O2 at the cyanine C
(21)=C(22) bond. Second, the dioxetane intermediate is cleaved
by simultaneous C–C and O–O fragmentation to a pair of car-
bonyl compounds. Third, domino intramolecular rearrangement
continues with the carbonyl segment bearing the amine undergo-
ing a b-elimination. The inherent speed of the final decarboxyla-
tion is of note. This reaction heterolytically cleaves the amine
along with a 1,3-cyclohexadiene and CO2 as by-products.

Despite the utility of this aryl amine photorelease reaction,
there are facets that remain to be elucidated further. For example,
can the photoreleased amine provide protection as stabilizers
(26) from unwanted photooxidation of cyanine, that is, nonselec-
tive reactions elsewhere than the C(21)=C(22) bond? Further-
more, does the amine product ability to physically quench 1O2

(27–30) hinder this reaction sequence thus leading to diminishing
returns in the photorelease process?

There is still a way to go before simple amines can be effi-
ciently photoreleased. The work of Schnermann et al. (1) is a
key initial step with the advent of NIR-absorbing cyanine con-
jugates to photorelease aryl amines. It has been shown that
the reaction involves the photorelease of anilines, but it is
conceivable that new cyanine conjugates will serve as a path-
way to the photorelease of other amine compounds. Such
endeavors with NIR light could enable amine photodelivery
deep in biological tissues; indeed, just as the work of Schner-
mann and colleagues has provided deep insight to photo-
chemists.
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